Étiquette | Explication | Type de données |
Points d’évaluation de la précision en entrée | La classe d’entités des points d’évaluation de la précision créée à partir de l’outil Créer des points d’évaluation de la précision, contenant les champs Classified et GrndTruth. Ces champs sont tous les deux des champs de type entier long. | Feature Layer |
Matrice de confusion en sortie | Le nom du fichier en sortie de la matrice de confusion au format tabulaire. Le format de la table est déterminé par l’emplacement et le chemin d’accès en sortie. Par défaut, la sortie sera une table de géodatabase. Si le chemin ne se trouve pas dans une géodatabase, spécifiez une extension .dbf pour l’enregistrer au format dBASE. | Table |
Disponible avec une licence Spatial Analyst.
Disponible avec une licence Image Analyst.
Synthèse
Calcule une matrice de confusion avec les erreurs d’omission et mandate et déduit un indice kappa de concordance, une intersection sur union (IoU) et une précision globale entre la carte classée et les données de référence.
Cet outil utilise les sorties de l’outil Créer des points d’évaluation de la précision ou de l’outilMettre à jour les points d’évaluation de la précision.
Utilisation
Le processus d’évaluation de la précision utilise les trois outils suivants dans cet ordre : Créer des points d’évaluation de la précision, Mettre à jour les points d’évaluation de la précision et Calculer la matrice de confusion.
Cet outil calcule une matrice de confusion à l’aide des points d’évaluation de la précision. Les points d’évaluation de la précision sont générés par l’outil Créer des points d’évaluation de la précision et mis à jour par l’outil Mettre à jour les points d’évaluation de la précision. Ces deux outils vérifient que chaque point aura des valeurs de classe valides pour les champs Classified et GrndTruth. Ces champs sont tous les deux des champs de type entier long. L’outil calcule la précision des utilisateurs et des producteurs de chaque classe, ainsi qu’un indice Kappa d’accord global. Ces taux de précision sont compris entre 0 et 1, 1 représentant une précision de 100 pour cent. Voici un exemple de matrice de confusion :
c_1 c_2 c_3 Total U_Accuracy Kappa c_1
49
4
4
57
0.8594
0
c_2
2
40
2
44
0.9091
0
c_3
3
3
59
65
0.9077
0
Total
54
47
65
166
0
0
P_Accuracy
0.9074
0.8511
0.9077
0
0.8916
0
Kappa
0
0
0
0
0
0.8357
Exemple de matrice de confusion La précision des utilisateurs montre les faux positifs, où les pixels sont incorrectement classés comme une classe connue alors qu’ils devraient être classés autrement. Cela est le cas par exemple lorsque l’image classée identifie un pixel comme imperméable, mais que la référence l’identifie comme une forêt. La classe imperméable comporte des pixels supplémentaires qui ne devraient pas être présents d’après les données de référence.
La précision de l’utilisateur est également désignée sous le nom d’erreurs de commission ou d’erreur de type 1. Les données qui permettent de calculer ce taux d’erreur sont lues à partir des lignes de la table.
La ligne Total montre le nombre de points qui devraient être identifiés comme une classe donnée d’après les données de référence.
La précision des producteurs est un faux négatif, où les pixels d’une classe connue sont classés ailleurs que dans cette classe. Cela est le cas par exemple lorsque l’image classée identifie un pixel comme une forêt, alors qu’il devrait être imperméable. Dans ce cas, la classe imperméable ne comporte pas les pixels qui devraient être présents d’après les données de référence.
La précision des producteurs est également désignée sous le nom d’erreurs d’omission ou d’erreur de type 2. Les données qui permettent de calculer ce taux d’erreur sont lues dans les colonnes de la table.
La colonne Total montre le nombre de points qui ont été identifiés comme une classe donnée d’après la carte classée.
L’indice Kappa d’accord offre une évaluation globale de la précision de la classification.
L’intersection sur union (IoU) est la surface de superposition entre la segmentation prévue et la réalité du terrain divisée par la surface d’union entre la segmentation prévue et la réalité du terrain. La valeur IoU est calculée pour chaque classe.
Paramètres
ComputeConfusionMatrix(in_accuracy_assessment_points, out_confusion_matrix)
Nom | Explication | Type de données |
in_accuracy_assessment_points | La classe d’entités des points d’évaluation de la précision créée à partir de l’outil Créer des points d’évaluation de la précision, contenant les champs Classified et GrndTruth. Ces champs sont tous les deux des champs de type entier long. | Feature Layer |
out_confusion_matrix | Le nom du fichier en sortie de la matrice de confusion au format tabulaire. Le format de la table est déterminé par l’emplacement et le chemin d’accès en sortie. Par défaut, la sortie sera une table de géodatabase. Si le chemin ne se trouve pas dans une géodatabase, spécifiez une extension .dbf pour l’enregistrer au format dBASE. | Table |
Exemple de code
Cet exemple calcule la matrice de confusion en fonction des points d’évaluation de la précision.
import arcpy
from arcpy.ia import *
# Check out the ArcGIS Image Analyst extension license
arcpy.CheckOutExtension("ImageAnalyst")
accuracy_assessment_points = "c:test\\aapnt2.shp"
confusion_matrix = "c:\\test\\confm.dbf"
ComputeConfusionMatrix(accuracy_assessment_points, confusion_matrix)
Environnements
Informations de licence
- Basic: Nécessite Image Analyst ou Spatial Analyst
- Standard: Nécessite Image Analyst ou Spatial Analyst
- Advanced: Nécessite Image Analyst ou Spatial Analyst
Rubriques connexes
Vous avez un commentaire à formuler concernant cette rubrique ?